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Monolith is a volume modelling software, a hybrid between a 3d CAD and a 3d image editing 

application. The user creates models by manipulating three dimensional images made of voxels. 

Monolith has been developed with multi material 3d printing in mind. Hence each voxel is made of 

two values, one of them is used to define the boundary between solid and void and the other the 

mixing ratio between two materials. The mixing ratio is realized using traditional typographic 

rasterization techniques extended to three dimensions. Therefore the user can define rasterization 

patterns with variable degrees of optical and elastic anisotropy. 



1 Terminology 

Voxel Image: A voxel image is a three dimensional structure that consists of one or more voxel 

channels. It is the equivalent of a regular 2d image. 2d Images usually consist of three colour 

channels [red green and blue]. Voxel images in monolith can have a variety of channels. The most 

common are the Shape channel that defines the boundaries between solid and void, and the 

material ratio channel that defines the mixing of two materials within the solid region. In addition 

there are mask channels used for compositing voxel images and specialized channels which hold 

for example structural analysis results when using the analysis tools. All channels within a Voxel 

image have the exact same resolution [number of voxels along the x, y and z axes]. 

Voxel channel: A voxel channel is basically a three dimensional array of numbers representing the 

variation of some scalar quantity over the voxel image box. In general most channels are 

normalized to the 0.0 to 1.0 or the -1.0 to 1.0. 

Layer: Layers are the building blocks of a monolith model. They are built as a stack with the top 

layers composited on the lower ones. For example a layer may create a box like field, another layer 

on top of it may smooth it, and another might apply a twist modifier. In that sense layers may be 

seen as voxel images, or image filters that are superimposed. The stack of layers is hierarchical as 

there are layers that can have child layers within them. For example the transform Layer manages 

an independent stack of layers that acts as a group and allows you to move scale and rotate the 

resulting object independently from the overall image. 

Shape channel: Every monolith image has a shape channel. Although the shape channel itself is 

“fuzzy” in that it contains a gradient of values [usually from 0 to 1] that vary continuously 

throughout the image volume, the purpose of this channel is ultimately to define a shape with a 

hard boundary. You can think of the shape channel as a grayscale 3d image that defines a gradient 

field. However at some point when the field is visualized or printed, it becomes binarized by 

applying a threshold [the isovalues]. Regions within the threshold are considered solid and regions 

outside the threshold are considered void. 

Material ratio channel: The material ratio channel is intended as a helper for dual material 

printing. It describers the material mixing ratio at each point in space. A value of 0.0 would mean 

that the first material is applied at the corresponding voxel and a value of 1.0 would correspond to 

the 2nd material. A value of 0.5 would be interpreted as a 50% mixture of the two materials, 

therefore mixing their colour, elastic and optical properties. 

Isovalues: An isovalue is a number that represents a threshold in a field. It is used in order to 

define surface contours in a three dimensional field [called isosurfaces]. Its primary purpose in 

monolith is to define the contour level at which the shape field transitions from void to solid.  

Isosurface: An isosurface is the surface that crosses all voxels in a field at a particular value [called 

the isovalue]. It defines the boundary or contour that separates voxels of high density [d>isovalue] 

from voxels of lower density [d<isovalue]. Isosurfaces are explicitly calculated for two reasons.  

First when visualizing the cut-off boundary of the shape field to reveal the shape that would result 

from its printing. Second when outputting STL meshes for 3d printing.  

Volume rendering: The volume rendering technique can visualize the voxel image fields without 

the need for explicitly calculating the isosurfaces, therefore it is much faster than isosurface 

rendering and is a preferred method when dealing with complex high resolution voxel images [e.g. 

medical datasets]. Unlike isosurface rendering it can also reveal the inner structures of transparent 

and translucent objects, as well as show the fine structures of the application of rasterization 

patterns. It is based on the rendering of planes parallel to the camera. Each plane represent s a 

slice through the voxel image and inherits the colour and transparency of the intersected voxels. 

The gradients of the shape and alpha fields are used to estimate volume normal and lighting 

effects.   

Rasterization: Rasterization is the process of generating the bitmap slices that the 3d printer 

actually prints, from the continuous voxel image fields. As with 2d images there are various ways 

to convert a low resolution grayscale field to a high resolution black and white binary bitmap that 

determines the exact placement of ink or material. This is the domain of 3d typography. In 

monolith the rasterization techniques are described by Raster patterns. 

Raster pattern: A raster pattern determines how the continuous gradients in voxel images are 

translated into high resolution binary bitmaps. For example there are patterns that use random 

noise to achieve blending and others that rely on three dimensional half tone techniques. In the 

end the raster pattern determines the microstructure and grain of the 3d printed object. Therefore 

one can achieve outcomes with anisotropic elastic and optical properties. 

Mask mesh: The mask mesh is used in to better control the outer boundary of the 3d printed 

object as well as help integrate more traditional 3d printing geometric workflows. The mask mesh 

can be created in any 3d modelling software as a watertight mesh surface. When imported into 

monolith it overrides the shape channel in the final composition step. Any voxel that falls outside 

the mask mesh will be void. For example you can create a shape in a surface modelling software 

and bring it into monolith as a mask mesh. Then you can use monolith to describe how materials 

vary within this shape, something that requires volumetric rather than surface modelling. The 

advantage of using a mask mesh is that it can capture sharp corners and discontinuities better than 

voxel based contours. 

Lith file: A lith file is a file that is used to store a monolith project. It captures the whole layer 

structure and not just the final voxel image outcome. Therefore it allows a parametric re-editing of 

the various primitives and filters that make up a monolith project. 

Vol file: The vol file is a file that contains a voxel image. It is more similar to conventional image 

files like tiff and png. Within the vol files the series of channels that make up an image are stored 

as arrays of double precision numbers. In addition the vol file stores the physical dimensions of the 

3d field in inches.  



2 Monolith UI 

 

 

Monolith’s user interface is divided into three main regions: 

a. The left side bar: You can use this area to access application wide settings and functionality. 

b. The Viewport: Where you can interact with the three dimensional representation of the 

model. 

c. The right working area: This region’s contents are contextual depending on the current 

active workflow. You can change workflow using the buttons on the far right edge of the 

window 

General 

application and 

visualization 

options 

3d viewport Current workflow working area 



2.1 General settings user interface 

    

The side bar consists of the system menu at the top and a collection of panels that give access to 

various settings within monolith. 

2.1.1 Main side-bar 

 

2.1.2 Visuals side-bar 

 

!!!The isosurface calculation can be slow for complex or high resolution images and it is implemented 

as an asynchronous operation. Therefore you may see the Isosurface checkbox turning pink. In that 

case the isosurface is being computed in the background and will be displayed as soon as it is ready. 

That means that the isosurface may not reflect the exact current state of your voxel model. [The 

volume rendering however always updates in sync with the voxel image, so use this rendering mode 

for complex operations] 

Menu 

Settings: Use the tabs to switch between general application settings 

and visualization options.  

Use the properties button  in order to access less frequently used 

settings. 

Change dimensions and resolution of voxel image 

If “automatic updates” is off the model will not update each time 

you make a change but rather will wait for you to press the update 

button manually. This is useful for high resolution or very complex 

models.  

“isovalues” controls the range of the shape layer that is considered 

solid.  

Slice clipping will make the portion of the model above the slice level 

invisible.  

The clipping plain allows you to slice through the model at an 

arbitrary angle in order to inspect interior structures in cross-section.  

Here you can set the colors of the two materials that are mixed along 

the material gradient.  

Using this combo box you can pick a different rendering API for the 

application. Once you change this setting you will need to restart 

monolith for it to take effect. Depending on your graphics card 

different modes might give you higher performance especially 

when using real time volume rendering. 

The texture mode determines the type of visualization that is used 

when in volume rendering mode.  

The viewport camera can switch between perspective, 

orthographic and axonometric view  

This setting determines the translucency of the model when in 

volume rendering mode. Lower values may help resolve internal 

structures.  

These settings determine whether the isosurface will be rendered 

and if so whether the caps that block its sides will be computed. 



2.1.3 Curves side-bar 

 

Use the curves side bar to import a set of curves into monolith. The curves are composited at the 

end of the rasterization process. In this way you can embed very fine detailed vector geometry in 

three dimensions without the need to generate heavy meshes. Therefore, you can achieve hairline 

printing [curves with widths equal to a single material dot at the maximum printer resolutions]. 

This technique is useful for embedding text and diagrams in 3d fields or visualizing streamlines. 

2.1.4 Mask Mesh side-bar 

Using a mask mesh will allow you to set an outer boundary for the voxel field defined by a water 

tight mesh modelled in another software. This will enable the use of existing geometry to define 

the shape while you can still take advantage of monolith in order to define the material 

distribution, mixing and micro-patterning within this shape. 

2.1.5 Comments side-bar 

 

You can attach comments to any monolith model. After adding a comment you can edit its text by 

clicking on it. You can also drag the comment or its anchoring point in 3d. In addition comments can 

be pinned or unpinned to the 2d viewport overlay.  



2.2 The viewport 

Monolith’s viewport allows the visualization of the volumetric model in real-time as well as 

interaction with several tools and workflows in the application.  

You can pan, zoom and rotate the camera using the left, middle and right mouse button while 

dragging the mouse. 

There are only a few controls available at the top of the viewport: 

   Click on any surface of the cube to set the camera to the respective side [black is the 

positive x axis and blue the positive y axis direction] 

  This button will re-centre the camera on the model 

  Here you can select between surface and volume rendering.  

 

 

Surface rendering [top left] is faster but as you can see from the two images above it won’t allow 

you to see the internal structures and patterns within the model. Volume rendering [top right] may 

be slow for some older graphics cards.  

 

These sliders are a shortcut to the same functionality as in the main side bar.  

The top slider sets the solid range threshold for the isosurface. 

The bottom slider determines the level for the current horizontal section. 



3 Top level workflows 

 

 

The three buttons at the far right edge of the main window let you switch between top level 

workflows. Currently monolith has three workflows which we will refer to from now on as Design, 

Rasterization and Structural simulation. 

Switching between workflows completely replaces the user interfaces of the working area on the 

right side of the window, but it does not destroy the information in the current workflow. You can 

switch between them freely at any time. 

  

 

 

 

Design and layer compositing 

Rasterization and micro pattern 

design workflow 

Structural analysis workflow 



3.1 Design workflow 

 

When the design workflow is active the user interface switches to the layer compositing panel 

[above right]. In this panel the user creates and manipulates layers that contain three dimensional 

objects or effects.  

 

This toolbar contains all the layers that the user can create. Each type of layer will either generate 

geometry, or apply an effect on the existing model. If you click on one of these buttons the new 

layer is added at the top of the current stack. Alternatively you can drag one of these buttons to 

the desired location in the stack. 

 

These controls on the top right corner help re-center and navigate the scrollbar area of the layer 

compositing panel [the large work area below the toolbar]. 

 

 

Layers are represented as a stack of tabs [above left]. Each layer has properties and parameters 

that the user can adjust, and these parameters are accessible through pop-up panels when clicking 

on the various buttons of each layer’s tab.  

 

Drag a layer to the black dot at the bottom of the window to delete it. 



3.1.1 The Layer Compositing stack 

 

 

The stack of layer tabs represents the order in which geometries are added together and effects 

applied from bottom to top. You can drag the tabs in order to rearrange layers. Or drag icons from 

the toolbar at the top in order to insert new layers. 

Below the stack there are two images that display the voxel values at a horizontal slice through the 

model. The two images represent the shape field and the material ratio gradient respectively. A 

third image is used for masking operations similar to an alpha channel. The z level of the horizontal 

slice is determined by the slider at the top of the 3d viewport. 

The options menu will allow you to clear all the layers or collapse them into a single voxelized 

image. This collapsed image contains a snapshot of the current model but it loses completely all the 

layer information and therefore the ability to edit parametrically the model.  

3.1.2 The layer tab 

 

 

Layers are represented by tabs in the stack panel. Each layer corresponds to a parametric operation 

that either creates or modifies the model.  

The tab gives you access to the layer’s properties. 

You can drag the layer from its icon to change its place in the stack or delete it. 

 This button will open up the layer’s settings window as a popup panel on the side. These 

settings will vary for different types of layers 

 This button gives access to the layer’s compositing options, including its blending 

strength with the layers below. 

The dot can be turned on and off to enable or disable the effect of a layer.  

  



3.1.3 The layer compositing options panel 

 

Monolith uses a layer compositing system. This means that every layer generates some voxel 

values that are subsequently combined with the corresponding voxel values below. The 

combination can yield different geometric outcomes depending on the arithmetic operation 

between the layers. Using the layer compositing options pop up you can select the type of 

compositing operation as well as the strength of composition. The four most commonly used 

operations are “copy”, “disabled”, “add”, “subtract” and “multiply”.  The compositing mode can 

be adjusted separately for each channel. 

“Copy” will replace the layer underneath with the new values. This is the default behaviour for 

layers that either distort or filter the values of the layer below [e.g. Gaussian blur].  

“Disabled” will ignore the channel during compositing. This is useful when you want to apply a 

filter on only a single layer of the underlying image. 

“Add”, “Subtract” and “Multiply” will roughly correspond to the geometric Boolean operations of 

“union”, “difference” and “intersection”   



For all compositing modes you can also define the strength value to determine the amount of 

blending: 

 

 

3.1.4 Layers with transformations 

Some types of layers can be transformed as a whole by 

applying typical translation, rotation and scaling 

transformations. In fact any layer that does not have a 

transformation of its own can be placed within a 

transformation stack  in order to modify its location, 

scaling and rotation. 

Layers with the affine transform icon  can be 

manipulated in this way. If you click on this icon the 

transform panel appears [image on the left]: 

Use this panel to define the rotation, scaling and translation 

of the corresponding layer. You can define the translation 

of transformed layers interactively in the 3d viewport. To 

do this check the “visible” check box at the top of this 

panel. This will show you the transformation bounding box 

in the viewport. You can drag this box around to reposition 

it. 

The “repeat pattern” checkbox converts a layer into a 

pattern. If you scale down such a layer so that it becomes 

smaller than the voxel image box in the viewport then this 

layer will be repeated to fill the complete voxel box. 

 

A layer and its transformed version [above]. Same transformed layer with thr “repeat” option 

turned on [below]: 

 



3.1.5 Layer Types overview 

 

In monolith you can create many types of geometric objects and effects by selecting different tools 

from the tool bar shown above. Some of these layers are simple effects with minimal user 

interaction required while others open up extensive user interfaces that enable new workflows and 

higher customization. 

3.1.5.1 Direct modelling layers 

3.1.5.1.1 Geometry based modelling 

 

The geometry based layer creates a voxel field controlled by geometric primitives like 

points, lines, circles, planes, curves and boxes. Each of these primitives generates a halo around it 

that fades with distance. The strength and falloff of this halo will determine the blending behaviour 

of the generated field. As objects intersect their fields blend smoothly. Objects with negative 

strength form voids in the field.  

Click on the + icon to add new geometric objects then select them from the list to modify their 

properties. You can also interact with them directly in the viewport. 

 



3.1.5.1.2 Freehand editing layer 

 

Freehand layers manage their own voxel image and are the closest to the functionality of 

a conventional image editing application. You can freely paint and create shapes on them by adding 

or subtracting shape density or altering the material ratio. All filters available to monolith are also 

applicable on free paint layers.  

You can use freehand layers to create geometry form scratch or touch up underlying layers. The 

default compositing mode for paint layers is “ADD”. This means that if you create a freehand layer 

on top of an existing layer, while you are painting with a positive strength brush it will seem as if 

you were adding material to the underlying layer while using a negative strength brush would 

remove material [without really altering the original layer underneath] [see images on the right 

where a freehand layer is composited on top of a function based layer]. 

 

Freehand layers are not parametric, in the sense that all changes you make to them [painting, 

adding geometry, applying filters] are persistent. They just modify the underlying voxel image 

without maintaining a history of operations, save from a few undo steps. 

  



3.1.5.1.2.1 Editing freehand layers 

In order to start editing a freehand layer click on the edit icon on the layer’s tab: 

 

This will bring up the layer editing panel: 

 

The freehand layer editing panel contains all the controls for manipulating the underlying voxel 

image managed by the selected layer. It is divided into 4 section: the menu, freehand tools, brush 

and brush alignment. 

3.1.5.1.2.1.1 Freehand Menu 

 

The menu bar of the editing panel contains the following functions: 

File: Is used to import and export the contents of the freehand layer as a vol file 

Edit: here you can change the size and resolution of the underlying voxel image as well as its 

channel layout. This resolution is independent of the one used for the main application. If the main 

application has a lower resolution than the freehand layer then you won’t be able to see all the 

details of that layer because it will be downsampled when it gets composited with all the other 

layers. 

Filters: This is the list of all filters available to monolith. They are identical to the filters on the layer 

selection toolbar but when applied on the freehand layer they modify its voxel values directly 

rather than create a parametric layer.  

 : undo and redo. 

X : close panel and exit freehand layer editing mode 

  



3.1.5.1.2.1.2 Freehand tools  

Freehand tools allow you to directly manipulate the voxels in the layer using methods familiar form 

image editing software and free form sculpting. The effect of most of these tools depends on the 

currently selected brush and brush properties. 

3.1.5.1.2.1.2.1 No tool 

The purpose of this button is to unselect any currently selected tool so that normal viewport mouse 

interaction can resume [for example dragging layers and geometric objects without drawing] 

3.1.5.1.2.1.2.2 Paint 

Using this tool you can freely add and remove material from the image. It uses the current brush to 

determine the profile and fall off of the strokes.  

 !!! Use the automatic 

plane constraint to make the brush stroke align 

with the view. When this switch is ON, if you press 

the mouse a drawing plane is created that passes 

through the projected three dimensional position 

of the mouse and is either parallel to the camera 

or parallel to the XY plane [if you are looking at 

the drawing from roughly a top down perspective 

of more than 45 degrees]. When this switch is OFF 

the mouse always snaps to the depth of the 

closest solid surface under the cursor. The effect 

of having the switch ON is more akin to freely 

tracing a trajectory in space. Having this off is 

equivalent to adding or piling up material on the 

current cursor spot. 

 

 

 

 

3.1.5.1.2.1.2.3 Line 

 

The line tool creates linear brush strokes between two 

points. [The line drawing is not a click and drag 

operation, it requires two clicks, on two different 

locations. This is so that you can rotate and zoom the 

view in between selecting the end points]  

 

 

 

 

 

 

3.1.5.1.2.1.2.4 Box 

 

Use this tool to create box shaped solids and voids. 

The first two clicks will determine the base of the 

box and the final click the height. 

 

 

 

 

 



3.1.5.1.2.1.2.5 Sphere 

 

Use this tool to create spherical solids and voids. 

 

 

 

 

 

 

 

 

3.1.5.1.2.1.2.6 Drill 

 

Use this tool to drill holes all the way through the voxel image. The tool picks up the tangent plane 

under the mouse cursor and will drill in the direction normal to that plane. 

3.1.5.1.2.1.2.7 Smooth 

 

Use this tool to apply local smoothing on the underlying voxel image. 

3.1.5.1.2.1.2.8 Smear 

 

The smear tool drags the material along the mouse path. The effect is similar to clay modelling. 

  



3.1.5.1.2.1.2.9 Twist and pinch 

Use this tool to twist, pinch or punch locally the voxel field. 

 

3.1.5.1.2.1.3 Brush settings 

Most of the freehand editing tools rely on a brush to 

determine the shape and blending of the area of 

influence around the mouse cursor. You can select a 

brush type from the combo-box below the tools.  

As the mouse cursor moves the brush is automatically 

aligned with the underlying geometry. This is easier to 

see with the box brush as it will always paint protrusions 

perpendicular to whatever solid surface is under the 

mouse. The roll [in plane angle] of the brush is 

determined by the “Roll angle” slider. The default roll is 

to align the angle of the brush with the viewer so that 

the local Y of the brush is aligned with the viewport’s 

vertical direction. 

The combo box below determines the compositing 

mode for paint operations. The opacity will determine 

the strength of the effect. 

Below there will be a number of slider equal to the 

number of channels in the voxel image. Typically there 

are just two sliders for the shape and material ratio 

channels. These determine the “colour” values of the 

brush as it paints over the corresponding channels. 

Unlike 2d painting programs here you can set negative 

values to the brush colour which would correspond to 

subtraction of material.  

To the right of each slider there is a switch [the black 

dot] you can click there to deactivate painting on a channel. For example you may want to paint the 

material ratio field without modifying the shape of the object. 

Finally below the channel sliders are the brush orientation settings. The automatic plane constrain 

switch, determines how click and drag operations work with the brush. If this switch is off the brush 

will just paint on the volume under the mouse cursor thus piling material over existing material.  

If the automatic plane constraint is on, as soon as you press the mouse a temporary drawing plane 

is constructed that passes through the mouse cursor and is either aligned to the camera or to the 

xy plane if the camera has a more than 45 degrees angle from the xy plane [looking at the scene 

from above or below]. As you drag the mouse the cursor intersects this temporary plane in mid-air 

without the need of some underlying geometry to support it.  



3.1.5.1.3 Grid point editing layer 

In grid editing mode you interact with a three dimensional grid of points. By determining a 

weight factor for each point, you determine whether the point is inside or outside the solid and 

how it would blend with its neighbours. You can right click on points to switch them from 

completely solid to completely void or the other way around. By left clicking and dragging up or 

down you can have a more granular control over the strength of each point. 

 

 

The grid editing control panel itself has only a few options. Most important is the visibility switch 

for the grid points at the top. 

In addition you can choose and interpolation mode between points which will determine the 

outcome of the point to point blending. On the right of this page you cans see some examples of 

the effect of different interpolation modes on the final shape. 

You can also change the grid resolution here if you need more detail. It is a good idea to start with 

a low resolution grid to set out the large scale shapes and then increase the resolution if you want 

to add more detail. 

 

  



3.1.5.2 Filters 

Most layers types do not generate new geometry but rather affect the layers below their position 

within the layer stack. Filter based layers extend the common 2d image filters to 3 dimensional 

voxel fields. 

3.1.5.2.1 Gaussian blur 

Gaussian blur is a smoothing technique that can remove noise, texture or small features 

from a voxel image. You can also apply a periodic Gaussian blur thus ensuring a seamless tiling of 

the blurred image [see pink example above]. 

 

 

 

 

3.1.5.2.2 Kernel based blur 

Unlike the Gaussian blur filter, the kernel based version can use a variety of smoothing 

kernels including box, sphere and Gaussian. It is in general slower than the Gaussian filter for large 

kernels but it enables anisotropic blurring which is not supported for the Gaussian filter [see 

second example above].  

 

 

 

  



3.1.5.2.3 Median 

The median filter replaces each voxel value with the median of its neighbours. The effect 

on the shape channel is similar to smoothing. It is more useful in removing artefacts from the 

material ratio channel as it can reduce noise while preserving sharp edges. 

3.1.5.2.4 Laplacian 

The laplacian filter is basically a three dimensional edge detection. Regions of the voxel 

image that display rapid change [sharp edges] will become highlighted by the laplacian filter. 

 

 

3.1.5.3 Morphological operators 

These are the two classic image morphological operators that can be combined to achieve various 

typical image processing effects [erosion, opening, closing etc…] 

 

 

 

 

3.1.5.3.1 Minimum 

The min filter replaces the value of each voxel with the smallest value in its 

neighbourhood. The result resembles erosion or skeletonization of the shape. 

 

 

3.1.5.3.2 Maximum 

The max filter replaces the value of each voxel with the largest value in its 

neighbourhood. The result resembles a bloating or inflation of the shape. 

 

  



3.1.5.4 Channel transformations 

3.1.5.4.1 Invert 

This filter replaces each value in the image with (1-value) therefore swapping solid and 

void regions [provided the image is normalized in the 0 to 1 range first] 

 

3.1.5.4.2 Histogram 

The histogram filter is used in order to analyse the distribution of densities in the voxel 

field. In addition it allows for the renormalization of the field within a selected range. 

 

3.1.5.4.3 Channel remap 

Use channel remapping to shuffle the channels of the underlying layer. For example you 

may want to swap the shape field with the material ratio or the mask field. 

3.1.5.4.4 Fill 

The fill filter simply fills the channel with a solid value. Useful also when clearing the free 

paint layer. 

3.1.5.4.5 Normalize 

The normalization filter will bring the voxel image values within the range of 0 to 1 or -1 

to 1. This is useful in cases where you generated an image with some process that results in very 

high field values or a large range [e.g. visualization of stresses in a solid] or after you apply a 

Gaussian blur which in general reduces the intensity of the image. 

  



3.1.5.5 Generative 

3.1.5.5.1 Function based fields 

The function based voxel field generation layer, creates a field whose values are defined 

by a formula. You can type any formula in the blue text box and it gets automatically parsed and 

displayed. A few predefined formulas are already provided by clicking on the f(r) button.  

The purpose of the formula is to generate a value for each voxel in space. For example the formula 

x2+ y2+ z2 will generate a field that has the value 0 in the centre and increases radially with the 

square of the distance. The isosurfaces of this field are spheres as the equation:  

x2+ y2+ z2=const describes a spherical surface. 

 

 

 

When you type a formula, the formula evaluator will step through each voxel in the field, feed the 

XYZ, UVW, ρφθ coordinates [absolute, normalized and relative spherical] to the formula, compute 

the resulting number and assign it to the corresponding voxel’s value. 

  



There are a few variable, function and operator names that are predefined but you can also define 

your own variables within a formula.  

The parser recognizes the following symbols: 

3.1.5.5.1.1.1 Constants: e pi 

The predefined constants e [for the Euler number] and pi [for π] 

3.1.5.5.1.1.2 Space coordinates: x y z u v w ruv phi theta 

For each voxel the evaluator will compute its coordinates in three different systems and pass them 

through the formula. Each voxel has a location x,y,z in inches. These are determined by the size of 

your printing region. In addition the evaluator computes normalized volume coordinates for each 

voxel. These are represented by the letters u,v,w and vary from -1.0 to +1.0 along each of the x,y,z 

axes. So the center pixel of the voxel image always has coordinates [0,0,0] and the bottom left 

corner [-1, -1, -1] etc.. Finally the ruv, phi and theta represent the spherical coordinates in relation 

to the UVW system. ruv is the radius [√(u2+ v2+ w2)] theta is the angle in the UV plane and phi the 

angle out of the UV plane. 

 

The diagram above shows the uvw and ρθφ coordinate systems. 

Note that the uvw system does not respect the aspect ratio of the box. Even for an elongated non 

cubic box the uvw coordinates will always span the -1 to +1 intervals. However the xyz system will 

reflect the actual dimensions of the box. You can freely combine the uvw and xyz variables in your 

formulas. 

 

In the image above the formula “u” describes a field that varies from -1 to 1 along the x axis which 

is simply a linear gradient. 

You can set the ranges of uvw to something different than [-1,1] by clicking on the dom button: 

 

!!!Note that certain preset formulas [e.g. gyroid etc..] will set the uvw range to non-normalized 

intervals when activated.  

3.1.5.5.1.1.3 Layer color: d 

The predefined variable d represents the value of the underlying layer on which the function based 

filter is superimposed. This can be used in order to make function filters that respond to the 

underlying geometry. 
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3.1.5.5.1.1.4 Operators: + - * /   ^ % 

The typical arithmetic operators for addition, subtraction, multiplication and division. 

+  : add 

-  : subtract 

*  : multiply 

/  : divide 

Use parentheses to clarify the order of operations: (u + v)*w     instead of    u + v*w 

^  : power , e.g. x^3 is x3  

%  : remainder of division 

3.1.5.5.1.1.5 Basic functions 

All the usual basic functions are supported, including trigonometric, inverse trigonometric, 

hyperbolic and exponential. Arguments for the trigonometric functions are in radians. 

sqrt  : square root : sqrt(a) 

pow  : raise to power (same as using ^): pow(x, 3.5) 

abs  : absolute value : abs(u) 

sin  : sine 

cos  : cosine 

tan  : tangent 

 

asin  : arc sine 

acos  : arc cosine 

atan  : arc tangent 

atan2  : arc tangent of ratio : e.g atan2(y,x) is the same as atan(y/x) but its sine reflects the 

quadrant. It is better to use atan2 when looking for results in the full circle [-π, +π] 

 

sinh  : hyperbolic sine 

cosh  : hyperbolic cosine 

tanh  : hyperbolic tangent 

 

floor  : floor of number : floor(2.6) is 2 

ceil  : ceiling of number: ceil(2.6) is 3 

round  : round number: round(2.6) is 3 but round (2.3) is 2 

rnd  : random number: rnd or rnd() is a random number between 0 and 1, rnd(5) is a random 

number between 0 and 5 

log  : natural logarithm 

exp  : exponential : exp(x) is ex 

3.1.5.5.1.1.6 Comparison and logical operators: <> & | ! 

In the formula editor Boolean results are mapped to the numbers 0 [false] and 1 [true].  

 

For example in the formula above the field takes the value 1.0 when u is greater than 0.0 and the 

value 0.0 otherwise. The result is a step function that jumps from 0 to 1 along the x axis. [u is the 

parameter that varies with the x axis] 

>  : greater than 

<  : less than 

&  : logical AND 

|  : logical OR 

!  : logical NOT 

xor : logical XOR [e.g. xor(u>0.5, v<0.2)] 

3.1.5.5.1.1.7 Conditional: if 

If is a function of three variables. If the first variable evaluates to 1 [true] then if evaluates to the 

2nd variable else it evaluates to the 3rd. 

if(u>0.5, cos(u*3.0), v)   

The above statement says that if the u parameter of a voxel is greater than 0.5 then the voxel value 

should be the number cos(3 u) else its value should be equal to the v parameter. 

3.1.5.5.1.1.8 List operators: norm norm2 sum prod min max 

The list operators follow the syntax op(v0, v1, v2 …) that is you can place an arbitrary number of 

comma separated expressions inside the parentheses following the operator token. These 

operators are the following: 

norm : return the norm of the list (e.g. norm(x, y) is equal to sqrt(x2+y2)) 

norm2  : is the square of the norm (e.g. norm2(x,y,u,a) is equal to (x2+ y2+ u2+ a2)) 

sum  : return the sum of the values in the list (e.g. sum(a,2,b) is equal to a+2+b) 

prod : is the product of the list (e.g. prod(x,y,w,cos(z)) is equal to x*y*w*cos(z)) 



min : returns the minimum value in the list 

max : returns the maximum value in the list 

3.1.5.5.1.1.9 custom variables  

The formula evaluator will automatically interpret any unrecognized symbol as a user defined 

variable. This makes it easy to define parametric formulas and explore their variations. A user 

variable will appear in red on the formula field under the blue text box and. You can click and drag 

a red variable to change its value and observe the shape changing or click on the π button to open 

up the user variable slider panel.  

 

 

You can also set the default value and range of a custom variable using the : operator. For example 

: 

cos(u*a:(2,0,20)) 

is the same as cos(u*a) but a is understood to have the default value 2 and as you drag its slider it 

will vary from a minimum of 0 to a maximum of 20. 

  



3.1.5.5.2 Branching 

The branching filter generates three dimensional tree-like branching structures. The 

branching pattern and geometric variation in the cross sections of the brunches are determined by 

special controls that act as mini timelines. 

 

Each of these controls defines a curve which determines how a particular parameter [e.g. width of 

brunch section or curvature of brunch] varies from the root to the tips of the terminal branches. 

When working with complex trees it is a good idea to turn off automatic updating [from the main 

panel] as branching structures slow down the recalculation of the voxel image significantly. 

The control panel for the branching structure is separated into two sections. The top sections 

determines overall characteristics of the generated pattern while the bottom is a set of micro-

timelines that determine the variation of branching properties with respect to growth time. 

The following options are exposed in the control panel: 

Show skeleton: set this to on to preview the skeletal 

structure of the tree. This is useful because it will allow 

you to preview the form in real time without having to 

recompute the voxel image field and the isosurface. 

Random seed: any integer number, it is the seed for 

random number generator used by the random 

properties of the tree. Two trees with exact same settings 

and the same random seed will look identically 

“random”. 

Maximum steps: the number of growth steps [and 

generated branch segments] from the root to the tip of 

the tree. The larger this number the slower the 

calculation speed. 

Total length: This is the total length of all the segments 

from the root to a tip of the tree. This settings defines the 

maximum height of the tree if it didn’t bend at all and 

therefore directly controls the overall size of the resulting 

structure. 

Fuzziness: this number determines the softness of the 

field around the tree during voxelization 

Seed point: these three numbers are the XYZ coordinates 

of the root node of the tree 

Sprout direction: These are the XYZ components of the 

sprouting vector. The default is [0,0,1] which means that 

the tree leaves the seed point with a direction along the 

positive Z axis. 

The next section of the control panel is using the micro-timelines to determine the growth pattern 

of the tree structure. For example in the following image we see the thickness control defining a 

cross section for the branches that starts quite wide and finishes at very thin tips. 



 

We could edit this timeline to one that starts thin becomes thicker in the middle and collapses 

again to zero at the tips: 

 

The timelines control the following parameters: 

Curvature: Determines how fast the branches bend as they propagate. Higher values will result in 

more crooked trees with branches forming loops. Also not that it takes both positive and negative 

values so the neutral line [straight branches] is somewhere in the middle of the graph [pink line]. 

Torsion: Determines the twist of the branches around their axis of growth. 

Length: Determines the length of individual branch segments. The maximum length of a branch 

segment is equal to totalLength/Steps. By changing this property you can change the rate of growth 

at particular sections of the structures. 

Thickness X and Y: These two timelines control the dimensions of the cross section in fractions of 

the overall voxel image size.  

Randomness: Determines the jitteriness of the growth pattern. 

Branch number: Determines the number of branches at branching points.  

Branch Frequency: Determines the frequency of branching points. !!! Be careful with this control, if 

you set it too low [control points near the bottom of the graph] then it means that the tree will 

branch out at every single step resulting in an exponential proliferation of branches and possibly a 

memory overload. Moving the control points to the upper limit of the graph will make branching 

less likely. 

Branch Spread: The spread angle away from the core branch for new branches. 

Branch Spread X and Y: these controls work in relation to the overall spread angle. They determine 

the spreading anisotropy. 

Branch Phase: controls the rotation of the new branches around the branching point 

Strength: Is the strength of the generated voxel field. For example you can make a tree whose 

density fades with distance from the root to the leaves. 

Gradient: Not used at the moment 

  



3.1.5.5.3 Atomic orbital 

The hydrogen orbital layer creates visualizations of atomic orbitals for hydrogen. These 

are based on spherical harmonics and create some interesting three dimensional density fields. It is 

also a demonstration of the type of visualizations that are possible with multi material continuum 

gradient techniques. 

 

 

 

You can choose the relative size of the orbital and determine its shape by the 3 quantum numbers 

n, l and m. 

The number n is the principal quantum number, a positive integer that determines the shell of the 

orbital. It is related to the mean distance of the electron from the nucleus. Geometrically it affects 

the size and number of spherical shells as we move away from the nucleus.  

The number l is the azimuthal quantum number and its value cannot be greater than n-1;  

The number m is the magnetic quantum number   

3.1.5.6 Import 

3.1.5.6.1 Referenced vol file 

Use this filter to insert a reference to a vol file in the layer stack. This creates an image 

layer that you can move rotate and scale but not edit. The content of the layer is linked to the 

referenced vol file. In this way you can reduce the size of models that require multiple instances of 

the same voxel-image to appear in different locations. If you use referenced files it is a good idea to 

save your lith file using the “save with resources” method. This will collect all referenced file in the 

same folder as the lith file and convert all references to relative file paths. 

3.1.5.6.2 Import and voxelize mesh 

This filter will import meshes from a variety of 3d formats, and voxelize them. Meshes 

need to be water tight for the operation to succeed. This layer produces a voxel image with the 

chosen resolution along the x axis. In this image all voxels inside the mesh are assigned the “fill 

value” selected and all voxels outside the mesh get the value 0. The voxelization uses super-

sampling so there is antialiasing along the edges of the mesh. 

 



3.1.5.7 Image based 

3.1.5.7.1 Image cube composite 

The image cube layer extrudes and combines three images along each of the XYZ axes. 

The example below shows the same image extruded along 1 [top left] 2 [top right] and three axes 

[middle left] using different composition functions. Using composition mode “ADD” [middle left] 

blends the extruded images, “MULTIPLY” [middle right] creates a smooth intersection. “MAX” and 

“MIN” [bottom left and right] work similarly to “ADD” and “MUTLIPLY” but with sharper creases 

along intersections. 

 

 

 

  



3.1.5.7.2 Image loft 

The image loft layer creates shapes that interpolate between images stacked along the z 

axis. You can import an unlimited number of image sections using the “+” button. Clicking on an 

image, highlights it and causes the image control panel to show. In this panel you can load a new 

image using the “load” button or change the z level of the image using the slider at the bottom. 

 

3.1.5.8 Distortion filters 

3.1.5.8.1 Twist 

The twist layer as its name implies, applies a torsional deformation to the underlying 

image.  

 

 

 



3.1.5.8.2 Inside out / inversion 

The inversion filter turns the voxel image inside out around an inversion point. Points 

near the image boundary are mapped to the center and center points are spread on the boundary.  

 

 

3.1.5.8.3 Symmetry 

 The symmetry filter imposes a multi-planar symmetry on the voxel image by mirroring 

and blending voxel values across 3 planes. 

 

  



 

3.1.5.8.4 Function based distortion 

The purpose of the function based distortion filter is to enable users to apply customized 

non- linear deformations on the voxel image. The ui is similar to the function based field generator. 

Here however you need to input 3 formulas of the form: 

u’=fu(u,v,w) 

v’=fv(u,v,w) 

w’=fw(u,v,w) 

The evaluator here will scan all the voxels in the voxel 

image. For each voxel it will calculate its normalized 

coordinates [u,v,w]. Then these coordinates will be passed 

to each one of the formulas to yield a new set of uvw 

coordinates [u’,v’,w’]. The value of the voxel [u,v,w] in this 

layer will become equal to the value of the voxel at [u’,v’,w’] 

in the layer below. In a sense this filter establishes a 

mapping between the voxel spaces of the two layers. [it is 

important here to note that this is a “lookup” transform of 

the 3d texture coordinates, so if you are used to applying 

“active” transforms to geometry [e.g. a rotation matrix] you should think of this as applying the 

inverse of such a transform to achieve the same effect. This means that we don’t know where each 

point on the source image will end up, we only define where each point in the destination image is 

coming from] 

  

the example here demonstrates the following transformation: 

u’= u + cos(10*v)*0.2 

v’=v 

w’=w 

This means that along the y and z axis (v and w) there will be no distortion. The v coordinate of the 

destination will map to the exact same position of the source. However the u coordinate has a 

cosine wave that swings along the y axis [cos(10*v)]. 
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3.1.5.9 +-Noise 

3.1.5.9.1 Diffusion limited aggregation 

DLA is a random growth filter. It is still under development and its implementation may 

change significantly in later versions of monolith. 

 

3.1.5.9.2 Noise 

The noise filter as the name suggests, adds noise to the underlying voxel field.  

 

3.1.5.10 Grouping 

3.1.5.10.1 Layer stack 

A layer stack represents a set of layers [voxel images and filters] that are composited on a 

temporary image before the result is composited back to the main stack. This allows for a 

hierarchical stacking, whereas two layers can be subtracted from each other before the result gets 

added to the main stack. 

As an example of layer stack grouping here is a sample containing three layers. The bottom one is a 

box filling the bottom half of the image, the middle layer contains a tube and the top layer a ring. 

  

The result of stacking the three layers is a composite object as shown in the following image: 

 

Now assuming that we wanted to apply some noise on the tube and twist the torus without 

affecting the whole image. If we just add the noise and twist effects we will get the following: 



 

The noise is applied to the tube as we wanted but also to the plane surface since it is just 

composited on top of the [plane + tube] image. The twist is also applied to everything and not just 

the torus. In order to isolate the effects we can use stack layers: 

 

First placing the tube and the noise [plus some histogram and renormalization filters to remove 

noise from the black regions] inside a stack layers we see the noise effect isolated only on the tube. 

We can also group the twist effect with the torus: 

 

So now the twist is applied to the torus only, and it is the twisted torus that is composited to the 

main stack. 

In general use grouping stacks to isolate operations, be it filters or Booleans before merging them 

to the root stack. 

 

3.1.5.10.2 Layer stack with affine transform 

The layer stack with affine transform works similar to the simple layer stack with the 

difference that the contents of this stack can be moved scaled and rotated as a group. Using stacks 

with transformations is computationally more expensive than the simple stack so if you don’t need 

to apply any transforms use the regular stack when possible. 

See the section on layer transformations that explains the transformation panel. 

  



3.2 Rasterization workflow 

3.2.1.1 The rasterization User interface 

When you select the top level workflow “rasterization” [buttons on the far right edge] the layer 

compositing interface is replaced by the rasterization controls.  

This panel has three major regions.  

On the top left is the pattern selection and definition area where you can select or define your own 

rasterization patterns. 

On the top right there is a preview window on which you can inspect a horizontal slice through the 

model in various ways, including the exact high resolution pattern that would be sent to a printer 

Finally on the bottom half of the panel are the texture mapping controls the will determine the 

local orientation and flow of the pattern as it is applied to the voxel image. 

 



3.2.1.2 The patterning process 

There are three elements that will determine the rasterization pattern in an image: 

 First the material gradient channel will determine the porosity of the pattern [where to place more 

of one material than the other] 

Second the selected raster pattern will determine the shape of the “dots” or other micro structures 

that realize this porosity 

Third the uvw texture coordinates will determine the flow of the pattern so that you can create 

highly controlled anisotropic materials. 

 

 

 

 

 



3.2.1.3 Halftone Patterns 

 

Halftoning or screening is a printing process which originated out of the need to reproduce 

continuous tone imagery which contained an infinite range of colours or greys using only one 

colour of ink and dots of different sizes.  Given that the printed dots are quite small, the 

reproduction process relies on an optical illusion where the human eye blends the halftone dots 

into continuous smooth tones.  New techniques have emerged through advancements in digital 

technology to reproduce high resolution vector graphics (displayed on screen) into finite resolution 

(ie. 600dpi) printable images. 

 

Monolith faces a similar problem where we need to translate a 3d voxel image into a format 

compatible with a finite-resolution printer – only now we need to use processes which can work in 

three dimensions.  Fortunately, we can draw upon existing digital image processing techniques as a 

starting point.  Dithering is one of the most common techniques used because of its ability to 

approximate continuous grey-scale values out of discrete black and white elements.   

Monolith’s default rasterization pattern is a Random Dithering which is a stochastic process which 

attempts to approximate a continuous gradient using a limited color palette known as color 

quantization.  Dithering, by its nature, introduces pattern into an image.  For the most part, these 

patterns are not discernible by the human eye because a single pixel in the raster pattern (when 

viewed at full-scale) corresponds to a single drop of resin on the 3d printer which is on the order of 

micrometers.  Nevertheless, the random dithering pattern introduces an element of stochasticity to 

perturb the algorithm a little.    

The random dithering pattern is macroscopically isotropic and works best if you want a very 

smooth continuous gradient between two materials.  However, the drawback is that the images 

that are output (one for each slice layer in the 3d print) are not readily compressible.  Compression 

algorithms work by approximating contiguous regions within an image which contain the same 

color value.  The random nature of this pattern precludes this from being effective. 

A more simplified form of dithering is known as Thresholding where each value is compared to a 

fixed threshold value.  In this algorithm, all pixels whose intensity level lies above the threshold 

value are quantized to 1; all others get a value of 0.  The following diagram shows this process 

applied to a two-dimensional image, however it can easily be applied to a three-dimensional voxel 

field as well. 

 

By using trilinear interpolation, we can determine the density of material at any location within the 

boundary volume. In many instances, the voxel grid resolution will be lower than the printer’s 

native one so the rasterization process has to interpolate between values.  Like most interpolation 

methods, this process estimates values that fall within range of known data points – in this case the 

eight corner points of each voxel cube element.  Then at each pixel, we use a tri-linear interpolation 

of the object fields to find the value at the corresponding point as well as a trilinear interpolation of 

the halftone field.  If the interpolated density value is greater than the threshold then the pixel is a 

solid otherwise it is void.  If the pixel is solid we check to see if the interpolated material mixing 

value is greater than the interpolated halftone value and the result of this check determines 

whether the pixel is assigned one material or the other.  

 



3.2.1.4 Raster from Image 

 

In addition to dithering, we can use other halftone techniques.  In halftoning, we use patterns to 

approximate continuous tonal gradients.  Those patterns can be simple dots or lines (each of which 

are included under the rasterization tab) or through custom 2D images or 3D voxel patterns. 

To create a halftone pattern from an image, simply create a black and white image using your 

favourite image editing software application.  While it is possible to use larger images as a halftone 

pattern, it is often a good idea to keep your images under 64px wide by 64px high to reduce your 

memory footprint.  In Monolith, click on the “add” button under the rasterization tab.  The drop-

down menu will ask you to specify whether you want to define a pattern using a 2D bitmap or a 3D 

voxel pattern.  After choosing a bitmap pattern, a blank template pattern will be inserted next to 

the existing patterns.  By selecting that pattern in the menu, you will be able to change its 

attributes like its name, pattern size, and the bitmap image you would like to use. 

Once you have a bitmap loaded into a pattern, you can specify how you want that image mapped 

throughout the volume.   Mapping modes can have a dramatic visual impact on your model and can 

be used to enforce optical or structural anisotropy at the rasterization scale.  Current mapping 

methods include extruding along the XY, YZ, or XZ axes as well as multiplicative or additive blending 

modes. 

 

 

Mapping modes using a horizontal linear gradient bitmap: [A] Extrude XY [B] Extrude YZ [C] 

Additive Blending [D] Multiplicative Blending. 

3.2.1.5 Raster from Voxels  

 

Similar to raster patterns from images, Monolith can create halftone patterns from existing 3d 

voxel images.  To create a voxel halftone pattern, simply click on the add button under the 

rasterization tab and choose from Voxel Pattern.  A blank template will be added to the 

rasterization menu.  By selecting this new pattern, you can select which voxel pattern you would 

like to use.  The From Current button will load the current voxel image as the propagating pattern.  

The load button will allow you to select an existing .vol file to use as the underlying pattern.  

 

 
 

[A] 3d voxel image of a scalar gyroid function and that same gyroid pattern used as a mesocopic 

halftone [B]. 

  



3.2.1.6 Preview Rasters in 2D and 3D 

 

Many multimaterial 3d printers include software applications which prepare existing files (usually 

meshes) for the printer. For ink-jet printers, this software will create a series of bitmap images – 

one for each print head corresponding to a single pass over the print bed.  We often refer to these 

bitmaps as slices.  In slices, a white pixel tells the printer that the corresponding print head should 

add a drop of resin while a black pixel indicates no resin should be added. 

One of the benefits of working within a voxel field – which is analogous to a pixel space – is that we 

can generate these slice files directly from the existing data structure.  For each printed layer, the 

algorithm generates two monochromatic bitmaps - one for each material using the resolution 

specifications of the 3D printer. Then at each pixel, we use a tri-linear interpolation of the object 

fields to find the value at the corresponding point as well as a trilinear interpolation of the halftone 

field.   

We can view a 2d composite preview of the raster slice file by selecting the Polyjet Preview option 

at the top of the preview window.  This will show a full-scale preview of the slice file.  Full-scale 

means that every pixel in the image corresponds to a single drop of resin in the 3d printer.  The 

preview image may appear stretched or skewed when compared to the 3d counterpart, depending 

on the printer resolution that you choose.  

 

3.2.1.7 Exporting rasterized slices for printing 

The 2d preview is actually a composite of the two materials. You can save the current slice or all 

the slices by using the options in the properties menu above the preview  

Exporting all the slices to high resolution will save a series of images [either pairs of 1 bit per pixel 

BMP or 8bit or 32 bit png files. 

This operation can be time consuming but runs on a separate thread so you can continue working 

while this is going on. A progress window will pop up as soon as you initiate one of these export 

jobs. 

 

  



3.2.1.8 Raster mapping and flow: the three dimensional texture 

coordinates 

As mentioned before you can control the shape of the rasterization pattern and its porosity by the 

material gradient channel. In addition you can define how the micro pattern will flow through the 

volume using a texture map. This is very similar to texture mapping techniques used in 2d surface 

modelling software however the texture coordinates now have one more component that 

determines the propagation of the voxel pattern within the thickness of a solid surface. 

The user interface for defining the texture mapping is right below the raster selection and preview 

panels: 

 

The combo box at the top enables you to select the type of parametric map to use. It contains the 

typical maps [box, spherical, cylindrical etc…] plus a special mesh based flow. All texture maps have 

the left side column of controls that determines the uniform orientation and scaling of the pattern, 

which corresponds to repetitions.  

The right side controls are determined by the specific map you choose.

 

Here are some examples of the typical texture maps and their effect on a spherical object: 

 

  



3.2.1.8.1 The mesh flow texture map 

In addition to the above uniform texture maps there is a mesh based map that will enable you to 

propagate the volumetric texture coordinates along any geometry. This map will use the UV 

coordinates from a surface model that you import and then propagate them inwards and outwards 

from the surface in order to generate the third volumetric coordinate. You can use this method 

when you select the  “UVW mesh map” from the texture mapping selection combo box. 

 

 

  



3.3 Structural Analysis workflow 

 

The final top level workflow exposes the structural analysis and optimization functionality in 

monolith. This workflow will enable you to run simulations and test the strength and distribution of 

stresses within the volumetric model. In addition a topology optimization module can help you 

determine lightweight minimum compliance structures that meet certain requirements. 

The user interface is organized as a series of steps [far right column] with embedded instructions. 

At the top right corner there is a button that turns pink each time the model is out of sync with the 

results [for example when you changed some material property or boundary condition]. You can 

click the “analysis needed” button at any point to refresh the model. Depending on the resolution 

of your model this may be a time consuming actions.  

You do not have to go through all the steps in order to setup an analysis and optimization model. 

For most cases the default options should be sufficient. The most important step is, step number 3 

where you define the actual forces and boundary conditions that determine the load case you want 

to test or optimize against. 

  



3.3.1 Structures: step 1: Input Data 

 

In this panel you can select the input geometry for the structural analysis module. 

 

This module manages its own voxel model and the changes you make to it do not reflect on your main 

model until you output them as a layer [last tab in this workflow]. 

 

You can input a voxel image here, either by grabbing a snapshot of the current model in monolith or 

importing a vol file. The data of the imported voxel model will be used to decide the solid/void 

condition for the structural model as well as the mixing of materials within this model. 

 

Alternatively you can skip this step and start with a fully solid box. In this case you can apply loads and 

support conditions to this model and use the optimization module in order to find a lightweight 

structure that you can then output back to the main application. 

3.3.2 Structures: step 2: Set Dimensions 

 

In this panel you can define the dimensions and resolution of the analysis model.                       

These settings will apply only on the structural model and not in the model you are creating in the 

main application.  

The resolution is an integer number that determines the number of voxels along the longest 

dimension of the box. 

 In general higher resolution will require more memory and more time for analysis and because of 

the volumetric nature of the model increasing the dimension a factor will increase the memory 

footprint by the same factor raised to the 3rd power and the analysis time by even more. In general 

start with a low resolution [about 16] where you can have near interactive rates of analysis in order 

to make sure loads and boundary conditions worked as you want.  

At the end you can ramp up the resolution here and let the analysis or optimization run again. 

Higher resolution will resolve finer structures during the optimization process and perhaps create 

more intricate geometries. 

  



3.3.3 Structures: step 3: Define Load Cases 

 

This is the most important panel in defining the analysis model. Here you can create load-cases 

[collections of load and support definitions].  

By default a load-case is already defined [you can add more using the “add load case” button] but it 

contains no loads or supports.  

During the structural analysis and optimization step monolith will simulate the action of different 

loads on your model with specified boundary conditions.  

A load is another word for a force acting at some location [or multiple locations] on your model. It 

could represent the action of the weight of a person sitting on a chair, or a heavy object hanging 

from the tip of a cantilever. By defining loads you define what the object you design is expected to 

endure, what is it good for.  

A boundary [or support] condition defines regions in your model that are immovable. A chair on a 

floor is fixed along the z axis because it cannot penetrate the floor. A bracket screwed to the wall 

has a completely fixed boundary condition along that interface since the material attached to the 

wall cannot move. In general you need to make sure that your model has proper boundary 

conditions otherwise when you apply a force it will simply slide to infinity as there is nothing to 

resist the movement. In the type if analysis doing here which is called linear elastic, not having 

proper boundary conditions will result in nonsensical results. In general there must be at least one 

point in your model that can resist the forces you apply. 

A Loadcase is a collection of applied forces and boundary conditions. This is a convenient way to 

group actions together. For example you could have a loadcase representing a person sitting on a 

chair and a different loadcase representing a person leaning back. For a building you could have 

one loadcase for each direction of wind that you want to test against. 

Loadcase in monolith are constructed by defining regions in space [boxes, spheres, etc...] that 

determine the properties of enclosed or neighbouring voxels.  

All units are SI [N, m, sec ...] 

You can select the current active load-case from the list. The loads and supports defined in the 

selected load-case are automatically assigned to the analysis system.  

The self-weight multiplier determines the factor by which the self-weight of each voxel is multiplied 

before it is converted into nodal loads. During optimization it is best to keep this at 0 and only 

optimize against the applied loads.  

To make it easy to set up some rough boundary conditions the box control may help. This control is 

a representation of the bounding volume of your voxel model. Its orientation matches the 3d 

viewports camera orientation. 

 

Clicking on any side edge or corner [grey elements] will toggle the boundary condition form totally 

fixed to totally free. This makes it easy for example to fix all the nodes on the ground with a single 

click. 

In the example to the left, the left most wall of the box is set to “fixed” and you can see the small 

boxes in the 3d viewport that represent fixed nodes along the left side of the bounding volume. 

The purple and blue elements will toggle applied loads. The rings apply point loads pointing 

downwards at the corners. The lines that come out of the sides apply area loads on the sides 

pointing along the corresponding side’s normal.  

If you require more control over the distribution of supports and loads you can use the tabs that 

are located below the box control.  These three tabs allow the definition of loads and supports for 

the current load-case [the density tab applies to all load-cases] 



 

You can use the “+” button to add a load regions. These are the same type of geometric objects 

used in the geometry based field generator layer [points, lines , planes, boxes etc…]. You define the 

overall load in KN. This load will be divided across all the nodes that fall within the area of influence 

of the geometric object. 

 

In the support tab use the “+” button to add geometric objects/ Using the XYZ checkboxes you 

determine the boundary conditions applied on all the nodes in the area of influence of selected 

geometric object. 

 

Finally in the Fixed Density tab you can determine areas that have fixed density [from 0 to 1]. The 

voxels within these regions will maintain their density value during optimization. For example you 

can use regions with very small density to signify areas where no material should be distributed or 

use areas with a density of 1.0 to designate regions that have to maintain their material throughout 

the optimisation process.  

  



3.3.4 Structures: step 4: Material definition 

 

Here you can define the material properties of your model. 

Currently monolith supports a dual material gradients 

You define the mechanical properties of the two materials as well as the curve that will determine 

the ratio of their elastic moduli corresponding to a specific mixture of the two materials. In general 

if you mix 50% of a soft and a hard material you will not get a material with the exact mean of their 

elastic properties 

In addition the micro structure of the material mixture will affect how the composite behave often 

in unpredictable ways 

However as this information is difficult to come by and for an initial approximate analysis you can 

leave the mixing curve as is. 

3.3.5 Structures: step 5: Run Analysis and Optimization 

 

Here you can either run the analysis of the current model as is or attempt to redistribute the 

material so that a more lightweight structure is found 

Monolith currently supports only linear elastic static analysis. This type of analysis is good when 

you want to assess the strength and stability of relatively rigid structures or objects but it does not 

work well for really flexible systems [e.g. very soft rubber 

When you press the "run analysis" button, monolith will simulate the action of the forces in your 

current loadcase and determine how each voxel in your model deforms [this deformation is called 

the strain]. These minute deformations add up to determine the overall deformation of the object 

you analyse. In addition by knowing how much different regions in your model deformed monolith 

can determine the stresses acting locally at any point in space. These stresses will give you 

indication about which regions in your model might need reinforcement.  

If you click on the "run optimization button", monolith will use a form finding method called 

"topology optimization" that will attempt to remove or redistribute the material in your model in 

order to find a structure that is maximally stiff for a given amount of material. This is also known as 

the "minimum compliance problem". Compliance is a measure of how flexible a structure is.  

The optimization algorithm assumes that you can "magically" vary continuously the strength [let's 

say the porosity] of your material in space. It will iteratively shift material around and rerun the 

structural analysis until it finds a better solution. That also means that it can take quite some time 

depending on the resolution of your model. 

 



On top of your current structural model, the optimization module needs three more pieces of 

information 

Target Volume: is the fraction of the overall volume of material left at the end of optimization. For 

example if you want to remove 50% of material from your box while maintaining as much strength 

as possible under your applied loads, you would set this value to 0.5 

Minimum Material Density: Is the minimum fraction of material strength [maximum porosity] 

allowed for a given voxel. This can be set to a very small value [e.g. 0.001] which would mean that a 

voxel with this relative strength can be considered void. In some cases however you might want to 

simply determine a distribution between two materials of different strengths while not allowing 

any holes to emerge. In this case you can set this value to the ratio of the weaker material's elastic 

modulus to that of the stronger.  

Penalization: this is an obscure settings that has to do with the specific algorithm used here during 

optimization. In general the highest this value is the more "high contrast" the final result will be, 

with sharp boundaries between high strength [and solid] and low strength [or void regions]. If you 

are interested in gradients rather than a solid/void condition set this value to around 1.0 otherwise 

leave it at 2.5 or 3.0. 

3.3.6 Structures: step 6: Visualize Results 

 

The purpose of this panel is to help you inspect the analysis model. You can select between various 

visualization modes as well as define the colour gradient and clipping iso values for the density 

field. . The 4 interpolators below the combo box determine the colour gradient [transfer function] 

used. In the example above we have chosen a stress visualization. The 4 interpolators define a 

gradient that will be blue for 0 stress and red near the maximum stress. Also low stress regions will 

have a very low alpha value [will be transparent].  

 

 



3.3.7 Structures: step 7: Extraction of stress lines 

 

 

Using this panel you can extract the principal stress lines from the analysed model. These lines are 

useful in guiding fibre placement or other reinforcement types within the bulk of the material. If 

you want you can add them to the printable curves set of monolith and they will be rasterized 

along with the rest of the model. As you can see from the photos on the right you can create very 

fine structures without having to actually convert the lines to meshes.  

 

 

The following controls are defined in this panel: 

Visible: use to turn on and off visibility of stress lines 

Number of seeds: determines the number of stress lines drawn. These will be randomly seeded 

throughout the analysis domain. 

S1/S2/S3: turn on these checkboxes to determine which of the three principal stress directions are 

used. S1 is the minimum eigenvalue direction [and usually will follow the compression paths]. S3 is 

the maximum direction [and will usually reveal tension paths]. S2 is the middle eigenvalue of the 

stress tensor. 

Steps: The number of integration steps along each stress line 

Dt: The integration step as a fraction of the voxel size.  

Colour By stress: When on stress lines will be coloured [red or blue] depending on whether the 

corresponding voxel is in compression or tension along the stressline. 

Transparency: the transparency of the stress lines 

Export: use this option to export stress lines as curves to a 3dm file. 

Add Printable Curves: Use this option to transfer the stress lines to the printable curves group. The 

selected thickness and material [chosen below] will be applied to these curves and they will be 

composited during rasterization. 



 

3.3.8 Structures: step 8: Output 

Finally you can output the optimization results back to the main monolith compositing system. 

When you click the “output” button a new layer will be created in monolith whose shape channel 

and material gradient channels are set to be the same as in the optimized model. 

 



4 I/O 

4.1 Import/Export voxel files 
Monolith has its own file formats for saving voxel data. The two formats are “lith” and “vol”. The 

lith” file stores the monolith layer stack with all the parameters and settings needed to recreate the 

model. In addition your texture mapping settings and structural analysis models if any are stored 

there as well. The vol file is a lightweight format that contains only the voxel values of the current 

model. You might want to export a model as a vol file if you want to for example use it as a 

rasterization pattern in another model. 

In additions you can import a stack of images from a designated folder that will automatically be 

converted to a freehand Layer in monolith. 

4.2 Export Meshes 
 

Monolith can export mesh files in various formats including stereolithography (.stl), VRML 2.0 

(.wrl), (.obj) and Rhino (.3dm) files.  Mesh files can also be saved out as slices where each individual 

slice represents a Boolean intersection between the Shape and Material channels.  If saving to a 

Rhino multimaterial slice file, then the slices will be saved to individual layers for easier post-

processing.  Stereolithography multimaterial slice files will save each mesh slice as a new .stl file. 

 

[A] VRML mesh exporting supports per vertex colouring. [B] Rhino multimaterial slice files will save 

individual slices on separate layers for easier post-processing. 


